Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Neutron stars provide a unique opportunity to study strongly interacting matter under extreme density conditions. The intricacies of matter inside neutron stars and their equation of state are not directly visible, but determine bulk properties, such as mass and radius, which affect the star's thermal X-ray emissions. However, the telescope spectra of these emissions are also affected by the stellar distance, hydrogen column, and effective surface temperature, which are not always well-constrained. Uncertainties on these nuisance parameters must be accounted for when making a robust estimation of the equation of state. In this study, we develop a novel methodology that, for the first time, can infer the full posterior distribution of both the equation of state and nuisance parameters directly from telescope observations. This method relies on the use of neural likelihood estimation, in which normalizing flows use samples of simulated telescope data to learn the likelihood of the neutron star spectra as a function of these parameters, coupled with Hamiltonian Monte Carlo methods to efficiently sample from the corresponding posterior distribution. Our approach surpasses the accuracy of previous methods, improves the interpretability of the results by providing access to the full posterior distribution, and naturally scales to a growing number of neutron star observations expected in the coming years.more » « less
- 
            The ATLAS experiment at CERN explores vast amounts of physics data to answer the most fundamental questions of the Universe.The prevalence of Python in scientific computing motivated ATLAS to adopt it for its data analysis workflows while enhancing users’ experience.This paper will describe to a broad audience how a large scientific collaboration leverages the power of the Scientific Python ecosystem to tackle domain-specific challenges and advance our understanding of the Cosmos.Through a simplified example of the renowned Higgs boson discovery, attendees will gain insights into the utilization of Python libraries to discriminate a signal in immersive noise, through tasks such as data cleaning, feature engineering, statistical interpretation and visualization at scale.more » « less
- 
            Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)In High Energy Physics facilities that provide High Performance Computing environments provide an opportunity to efficiently perform the statistical inference required for analysis of data from the Large Hadron Collider, but can pose problems with orchestration and efficient scheduling. The compute architectures at these facilities do not easily support the Python compute model, and the configuration scheduling of batch jobs for physics often requires expertise in multiple job scheduling services. The combination of the pure-Python libraries pyhf and funcX reduces the common problem in HEP analyses of performing statistical inference with binned models, that would traditionally take multiple hours and bespoke scheduling, to an on-demand (fitting) “function as a service” that can scalably execute across workers in just a few minutes, offering reduced time to insight and inference. We demonstrate execution of a scalable workflow using funcX to simultaneously fit 125 signal hypotheses from a published ATLAS search for new physics using pyhf with a wall time of under 3 minutes. We additionally show performance comparisons for other physics analyses with openly published probability models and argue for a blueprint of fitting as a service systems at HPC centers.more » « less
- 
            First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.more » « less
- 
            The statistical models used to derive the results of experimental analyses are of incredible scientific value andare essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases -including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits -we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.more » « less
- 
            We describe the outcome of a data challenge conducted as part of the Dark Machines (https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of >1 billion simulated LHC events corresponding to 10\, fb^{-1} 10 f b − 1 of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge.more » « less
- 
            Abstract The long-term sustainability of the high-energy physics (HEP) research software ecosystem is essential to the field. With new facilities and upgrades coming online throughout the 2020s, this will only become increasingly important. Meeting the sustainability challenge requires a workforce with a combination of HEP domain knowledge and advanced software skills. The required software skills fall into three broad groups. The first is fundamental and generic software engineering (e.g., Unix, version control, C++, and continuous integration). The second is knowledge of domain-specific HEP packages and practices (e.g., the ROOT data format and analysis framework). The third is more advanced knowledge involving specialized techniques, including parallel programming, machine learning and data science tools, and techniques to maintain software projects at all scales. This paper discusses the collective software training program in HEP led by the HEP Software Foundation (HSF) and the Institute for Research and Innovation in Software in HEP (IRIS-HEP). The program equips participants with an array of software skills that serve as ingredients for the solution of HEP computing challenges. Beyond serving the community by ensuring that members are able to pursue research goals, the program serves individuals by providing intellectual capital and transferable skills important to careers in the realm of software and computing, inside or outside HEP.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
